5.6.2 Transformation Properties of Tensors

The last property of tensors that we need to consider is the manner in which they transform between different reference frames. This can be derived in a direct fashion that makes use of the fact that the tensors were defined in a way that is independent of the choice of reference frame, and hence tensors are geometrical objects (in the same way as four-vectors are) that have an existence in spacetime independent of any choice of reference frame. With that in mind, we can immediately write for the covariant components of a tensor T

$$
\begin{equation*}
\mathrm{T}(\vec{a}, \vec{b}, \vec{c}, \ldots)=T_{\mu v \alpha \ldots} a^{\mu} b^{\nu} c^{\alpha} \ldots=T_{\mu^{\prime} v^{\prime} \alpha^{\prime} \ldots .} a^{\mu^{\prime}} b^{v^{\prime}} c^{\alpha^{\prime}} \ldots \tag{5.99}
\end{equation*}
$$

By using $a^{\mu^{\prime}}=\Lambda_{v}^{\mu^{\prime}} a^{v}$ and similarly for the other vector components, this becomes

$$
\begin{equation*}
T_{\mu v a \ldots} a^{\mu} b^{\nu} c^{\alpha} \ldots=T_{\mu^{\prime} v^{\prime} \alpha^{\prime} \ldots . .} \Lambda_{\mu}^{\mu^{\prime}} \Lambda_{v}^{v^{\prime}} \Lambda_{\alpha}^{\alpha^{\prime}} \ldots a^{\mu} b^{\nu} c^{\alpha} \ldots \tag{5.100}
\end{equation*}
$$

As the vectors $\vec{a}, \vec{b}, \vec{c} \ldots$ are arbitrary, we have

$$
\begin{equation*}
T_{\mu v \alpha \ldots}=\Lambda_{\mu}^{\mu^{\prime}} \Lambda_{v}^{v} \Lambda_{\alpha}^{\alpha^{\prime}} \ldots T_{\mu^{\prime} \vee \alpha^{\prime} \ldots} \tag{5.101}
\end{equation*}
$$

In other words, the transformation is carried out in the same fashion as we have seen for the single index case (i.e. for the components of vectors). In a similar way (by use of $g^{\mu \nu}$ to raise indices), we can show for the contravariant components that

$$
\begin{equation*}
T^{\mu v a \ldots}=\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\gamma^{\prime}}^{v} \Lambda_{\alpha^{\prime}}^{\alpha} \ldots T^{\mu^{\prime} v^{\prime} \alpha^{\prime} \ldots} \tag{5.102}
\end{equation*}
$$

The results Eq. (5.101) and Eq. (5.102), and a corresponding result for mixed components of the tensor T can be used as a test to see whether or not a multi-indexed quantity is, in fact, a tensor. We shall see how this can be implemented in the case of the Faraday tensor used to describe the electromagnetic field.

